Skip to content

EasyAnimate

更新: 12/21/2024 字数: 0 字 时长: 0 分钟

概述

EasyAnimate是一个基于transformer结构的pipeline,可用于生成AI图片视频、训练Diffusion Transformer的基线模型与Lora模型,我们支持从已经训练好的EasyAnimate模型直接进行预测,生成不同分辨率,6秒左右、fps8的视频(EasyAnimateV5,1 ~ 49帧),也支持用户训练自己的基线模型与Lora模型,进行一定的风格变换。

项目简介

项目信息

在线体验

HuggingFace体验点击访问

ModelScope体验点击访问

模型下载

  • 如果下载太慢,可以考虑将https://huggingface.co/改为https://hf-mirror.com
名称种类存储空间Hugging FaceModel Scope描述
EasyAnimateV5-7b-zh-InPEasyAnimateV522 GBLinkLink官方的7B图生视频权重。支持多分辨率(512,768,1024)的视频预测,支持多分辨率(512,768,1024)的视频预测,以49帧、每秒8帧进行训练,支持中文与英文双语预测
EasyAnimateV5-7b-zhEasyAnimateV522 GBLinkLink官方的7B文生视频权重。可用于进行下游任务的fientune。支持多分辨率(512,768,1024)的视频预测,支持多分辨率(512,768,1024)的视频预测,以49帧、每秒8帧进行训练,支持中文与英文双语预测
EasyAnimateV5-Reward-LoRAsEasyAnimateV5-LinkLink通过奖励反向传播技术,优化了EasyAnimateV5-12b生成的视频,以更好地匹配人类偏好|

权重放置

📦 models/
├── 📂 Diffusion_Transformer/
│   ├── 📂 EasyAnimateV5-12b-zh-InP/
│   └── 📂 EasyAnimateV5-12b-zh/
├── 📂 Personalized_Model/
│   └── your trained trainformer model / your trained lora model (for UI load)

paper

arxiv: 点击访问

新特性

2024.11.08
  • 更新到v5版本,最大支持1024x102449帧, 6s, 8fps视频生成,拓展模型规模到12B,应用MMDIT结构,支持不同输入的控制模型,支持中文与英文双语预测。
2024.08.15
  • 更新到v4版本,最大支持1024x1024144帧, 6s, 24fps视频生成,支持文、图、视频生视频,单个模型可支持512到1280任意分辨率,支持中文与英文双语预测。
2024.07.01
  • 更新到v3版本,最大支持960x960144帧6s, 24fps视频生成,支持文与图生视频模型。
2024.06.17
  • ModelScope-Sora“数据导演”创意竞速——第三届Data-Juicer大模型数据挑战赛已经正式启动!其使用EasyAnimate作为基础模型,探究数据处理对于模型训练的作用。立即访问竞赛官网,了解赛事详情。
2024.05.26
  • 更新到v2版本,最大支持768x768,144帧,6s, 24fps视频生成。
2024.04.12
  • 创建代码!现在支持 WindowsLinux

系统及环境要求

我们已验证EasyAnimate可在以下环境中执行:

Windows 的详细信息

  • 操作系统 Windows 10
  • python: python3.10 & python3.11
  • pytorch: torch2.2.0
  • CUDA: 11.8 & 12.1
  • CUDNN: 8+
  • GPU: Nvidia-3060 12G

Linux 的详细信息

  • 操作系统 Ubuntu 20.04, CentOS
  • python: python3.10 & python3.11
  • pytorch: torch2.2.0
  • CUDA: 11.8 & 12.1
  • CUDNN: 8+
  • GPU:Nvidia-V100 16G & Nvidia-A10 24G & Nvidia-A100 40G & Nvidia-A100 80G

我们需要大约 60GB 的可用磁盘空间,请检查!

EasyAnimateV5-12B的视频大小可以由不同的GPU Memory生成,包括

GPU memory384x672x72384x672x49576x1008x25576x1008x49768x1344x25768x1344x49
16GB🧡🧡
24GB🧡🧡🧡🧡
40GB
80GB
  • ✅ 表示它可以在"model_cpu_offload"的情况下运行,

  • 🧡代表它可以在"model_cpu_offload_and_qfloat8"的情况下运行,

  • ⭕️ 表示它可以在"sequential_cpu_offload"的情况下运行,

  • ❌ 表示它无法运行。请注意,使用sequential_cpu_offload运行会更慢。

注意

  • 有一些不支持torch.bfloat16的卡型,如2080tiV100,需要将app.pypredict文件中的weight_dtype修改为torch.float16才可以运行。

EasyAnimateV5-12B使用不同GPU在25个steps中的生成时间如下:

GPU384x672x72384x672x49576x1008x25576x1008x49768x1344x25768x1344x49
A10 24GB约120秒 (4.8s/it)约240秒 (9.6s/it)约320秒 (12.7s/it)约750秒 (29.8s/it)
A100 80GB约45秒 (1.75s/it)约90秒 (3.7s/it)约120秒 (4.7s/it)约300秒 (11.4s/it)约265秒 (10.6s/it)约710秒 (28.3s/it)

通过Docker安装

  • 使用docker的情况下,请保证机器中已经正确安装显卡驱动与CUDA环境,然后以此执行以下命令:
sh
# pull image
docker pull mybigpai-public-registry.cn-beijing.cr.aliyuncs.com/easycv/torch_cuda:easyanimate

# enter image
docker run -it -p 7860:7860 --network host --gpus all --security-opt seccomp:unconfined --shm-size 200g mybigpai-public-registry.cn-beijing.cr.aliyuncs.com/easycv/torch_cuda:easyanimate

# clone code
git clone https://github.com/aigc-apps/EasyAnimate.git

# enter EasyAnimate's dir
cd EasyAnimate

# download weights
mkdir models/Diffusion_Transformer
mkdir models/Motion_Module
mkdir models/Personalized_Model

# Please use the hugginface link or modelscope link to download the EasyAnimateV5 model.
# I2V models
# https://huggingface.co/alibaba-pai/EasyAnimateV5-12b-zh-InP
# https://modelscope.cn/models/PAI/EasyAnimateV5-12b-zh-InP
# T2V models
# https://huggingface.co/alibaba-pai/EasyAnimateV5-12b-zh
# https://modelscope.cn/models/PAI/EasyAnimateV5-12b-zh

V5版免安装win-webui版🔑

注意

解压后,路径不要含有中文路径不要含有中文路径不要含有中文

说明

  • 软件已经过测试,测试平台为Windows10Nvidia-4090显卡
  • 不支持AMD显卡核显,显存尽量8GB以上,cuda-12版本,低显存或低cuda版本不保证正常使用
  • 点此查看自己的显卡相关信息
  • 压缩包已包含依赖的环境模型等大文件,无需安装环境,点开即用;
  • webUI版使用官方Git源码构建,功能更全面,可直接使用官方运行示例
  • 大小:17GB

预览

image-20241209085329784

image-20241209084145383

image-20241209084615503

下载地址

主地址

备用地址

  • 密码:4331

V5模型实测

测试环境

文生视频

运行信息

  • 每步(it)耗时:3-5s

  • 40步耗时:约3分钟

示例1-人物电影风

A woman with blood on her face and a white tank top... A woman with blood on her face and a white tank top looks down and to her right, then back up as she speaks. She has dark hair pulled back, light skin, and her face and chest are covered in blood. The camera angle is a close-up, focused on the woman's face and upper torso. The lighting is dim and blue-toned, creating a somber and intense atmosphere. The scene appears to be from a movie or TV show.

示例2-风景

The camera pans over a snow-covered mountain range...The camera pans over a snow-covered mountain range, revealing a vast expanse of snow-capped peaks and valleys.The mountains are covered in a thick layer of snow, with some areas appearing almost white while others have a slightly darker, almost grayish hue. The peaks are jagged and irregular, with some rising sharply into the sky while others are more rounded. The valleys are deep and narrow, with steep slopes that are also covered in snow. The trees in the foreground are mostly bare, with only a few leaves remaining on their branches. The sky is overcast, with thick clouds obscuring the sun. The overall impression is one of peace and tranquility, with the snow-covered mountains standing as a testament to the power and beauty of nature.

图生视频

示例1

  • 运行信息
    • 576x576尺寸
    • 每步(it)耗时:5-7s
    • 30步约耗时:3分钟

image-20241209080642211

A young woman with beautiful clear eyes and black hair, looking at the camera quietly. With a smile on her face, she opened her mouth slightly and the camera focused on her face. The video quality is very high and the field of view is very clear. High quality, masterpiece, best quality, high resolution, ultra-fine, dreamlike.

示例2

image-20241209091052247

A young woman with beautiful and clear eyes and blonde hair standing and white dress in a forest wearing a crown. She seems to be lost in thought, and the camera focuses on her face. The video is of high quality, and the view is very clear. High quality, masterpiece, best quality, highres, ultra-detailed, fantastic.

ComyUI版

  • 还没测试,后续补充......

网站公告

说明

本站正在搭建并持续更新中,如果对您有帮助,不妨加入收藏

Last updated: